準線性函數 - 經濟
By Una
at 2012-10-30T20:15
at 2012-10-30T20:15
Table of Contents
※ 引述《tteerryy (terry)》之銘言:
: 題目:u(x)具有準線性偏好,證明V(u(x))亦為準線性偏好,其中V'(u(x))>0
令 dU(x,y)= Fx dx + Fy dy (Fx, Fy分別為U對x,y之偏微分)
過任意點(x,y)之等效用U線之切線應為 Fx x + Fy y = k
假定x和y之價格分別為p1, p2
成本為h之等成本線為 p1 x + p2 y= h
等成本下之最佳效用發生在等成本線與等效用線相切時
(x,y)須符合 Fx/p1 = Fy/p2
而對任意函數 V(U(x,y))
d V = (dV/dU) dU = [Fx (dV/dU)] dx + [Fy (dV/dU)] dy
等成本線與之相切處 [Fx (dV/dU)] / p1 = [Fy (dU/dV)] /p2
兩邊消掉 dV/dU => (x,y)仍須符合 Fx/p1 = Fy/p2
意即等成本下最佳效用之(x,y)組合,在U(x,y)和V(U(x,y))完全相同
若U(x,y)之x,y具準線性偏好,V(U(x,y))自然也具準線性偏好
--
: 題目:u(x)具有準線性偏好,證明V(u(x))亦為準線性偏好,其中V'(u(x))>0
令 dU(x,y)= Fx dx + Fy dy (Fx, Fy分別為U對x,y之偏微分)
過任意點(x,y)之等效用U線之切線應為 Fx x + Fy y = k
假定x和y之價格分別為p1, p2
成本為h之等成本線為 p1 x + p2 y= h
等成本下之最佳效用發生在等成本線與等效用線相切時
(x,y)須符合 Fx/p1 = Fy/p2
而對任意函數 V(U(x,y))
d V = (dV/dU) dU = [Fx (dV/dU)] dx + [Fy (dV/dU)] dy
等成本線與之相切處 [Fx (dV/dU)] / p1 = [Fy (dU/dV)] /p2
兩邊消掉 dV/dU => (x,y)仍須符合 Fx/p1 = Fy/p2
意即等成本下最佳效用之(x,y)組合,在U(x,y)和V(U(x,y))完全相同
若U(x,y)之x,y具準線性偏好,V(U(x,y))自然也具準線性偏好
--
Tags:
經濟
All Comments
By John
at 2012-11-02T10:56
at 2012-11-02T10:56
By Quanna
at 2012-11-05T19:20
at 2012-11-05T19:20
By Dorothy
at 2012-11-06T15:57
at 2012-11-06T15:57
By Oscar
at 2012-11-07T03:12
at 2012-11-07T03:12
By Yuri
at 2012-11-08T22:48
at 2012-11-08T22:48
Related Posts
美元是否遲早崩盤?
By Robert
at 2012-10-29T22:48
at 2012-10-29T22:48
美元是否遲早崩盤?
By Jacky
at 2012-10-29T20:33
at 2012-10-29T20:33
美元是否遲早崩盤?
By Irma
at 2012-10-28T18:41
at 2012-10-28T18:41
獨占市場的廣告效果
By Tracy
at 2012-10-28T07:26
at 2012-10-28T07:26
流動性資金
By Oliver
at 2012-10-28T01:22
at 2012-10-28T01:22