Applied Materials AI(x) Platform Harne - 股票

Agatha avatar
By Agatha
at 2021-04-05T23:35

Table of Contents

原文標題:

Applied Materials AI(x) Platform Harnesses the Power of Big Data and AI to
Accelerate Semiconductor Technology Breakthroughs from Lab to Fab
應用材料AI(x)平台利用大數據和AI的力量來加速從實驗室到Fab的半導體技術突破

原文連結:

https://reurl.cc/dVl9ny

發布時間:

April 05, 2021 07:30 ET

原文內容:

SANTA CLARA, Calif., April 05, 2021 (GLOBE NEWSWIRE) -- Applied Materials,
Inc. today announced AIx TM, an innovative platform that accelerates the
discovery, development and commercial deployment of new chip technologies.

AIx, which stands for Actionable Insight Accelerator, enables engineers to
see into semiconductor processes in real-time, take millions of measurements
across wafers and individual chips, and optimize thousands of process
variables to improve semiconductor performance, power, area-cost and time to
market (PPACt). The AIx platform works across all Applied Materials process
equipment, eBeam metrology systems and inspection systems and is extendable
from lab to fab. By providing engineers with the ability to fingerprint
innovative recipes during R&D, AIx accelerates their transfer and ramp into
high-volume manufacturing (HVM). AIx is already in use today, improving the
PPACt of both logic and memory chips.

“Accelerating the ‘t’ in PPACt is the biggest value driver for all the
companies in our ecosystem,” said Prabu Raja, senior vice president and
general manager of the Semiconductor Products Group at Applied Materials. “
AIx connects all the capabilities of Applied in new ways with the goal of
cutting development time in half and improving process windows by one third.
We have been developing AIx over the past three years to provide engineers
with an entirely new kind of toolkit to solve the increasingly complex
challenges of our industry.”

“AIx uses the power of big data and AI to give customers better outcomes at
every stage of the semiconductor technology lifecycle, from R&D to ramp and
HVM,” said Raman Achutharaman, group vice president, Semiconductor Products
Group at Applied Materials. “Engineers have thousands of process variables
to choose from, and only a handful of elusive correlations provide the key to
optimizing recipes for world-class results. AIx identifies and magnifies this
actionable data, providing engineers with the actionable insights needed to
accelerate PPACt.”

“Once again, Applied Materials is adding real value to the semiconductor
industry with big data analytics in the form of its AIx platform for the
process engineering ecosystem,” said Dan Hutcheson, CEO and chairman of
VLSIresearch. “AIx moves beyond the decades-old statistical process control
methods based on linear data streams to a new multidimensional world where
data from 3D images, in-situ metrology and sensors can be stacked and then
distilled into information that can be acted on. Applied’s AIx is a new
toolkit that promises to accelerate R&D, thereby shortening time to results
and ultimately time to money. I expect AIx algorithms will be ported to
production to control the process with real-time chamber control.”

The AIx platform includes:

‧ ChamberAITM: New sensors and machine learning algorithms for Applied
Materials process chambers that provide engineers with real-time analytics of
variables including chemistry, energy, pressure, temperature and duration.

‧ On-board metrology: Unique in-vacuum metrology that enables new films to
be measured as they are being deposited, with angstrom-level precision.

‧ Inline metrology: Unique algorithms based on Applied eBeam metrology which
can provide a 100-fold increase in measurement speed versus legacy approaches
along with 50 percent higher resolution. Engineers can obtain over one
million 3D wafer measurements per hour to make nanometer-scale assessments of
how miniscule changes in recipes affect on-chip devices and structures.

‧ AppliedPROTM: Process Recipe Optimizer generates digital process maps that
help accelerate materials and recipe development, reduce variability and
widen process windows. AppliedPRO can be used to optimize individual chambers
and tools as well as accelerate matching across a fleet of systems.

‧ Digital twins: The AIx platform includes digital twin models of select
Applied Materials chambers and systems that enable virtual experiments which
accelerate recipe development, improve matching and ramp transfer, and
optimize output and yield in high-volume production.

‧ Computing: The AIx platform includes the computing resources needed to
store and analyze massive data using machine learning and AI algorithms.

Applied Materials will share AIx case studies at its 2021 Investor Meeting on
April 6 and at Master Class events scheduled for May 5 and June 16, 2021.


機翻如下:

加利福尼亞州聖克拉拉市,2021年4月5日(GLOBE NEWSWIRE)--應用材料公司今天宣佈推
出AIx TM,這是一個創新平臺,可加速新晶片技術的發現、開發和商業部署。

AIx是Actionable Insight Accelerator的縮寫,它使工程師能夠即時瞭解半導體工藝,
對晶圓和單個晶片進行數百萬次測量,並優化數千個工藝變數,以提高半導體性能、功率
、面積成本和上市時間(PPACt)。AIx平臺適用于所有應用材料公司的工藝設備、eBeam
計量系統和檢測系統,並可從實驗室擴展到工廠。通過為工程師提供在研發過程中對創新
配方進行指紋識別的能力,AIx加速了它們的轉移和進入大批量生產(HVM)的速度。AIx
如今已經投入使用,改善了邏輯和記憶體晶片的PPACt。

"加速PPACt中的't'是我們生態系統中所有公司最大的價值驅動力,"應用材料公司高級副
總裁兼半導體產品部總經理Prabu Raja說。"AIx以新的方式連接了Applied的所有能力,
目標是將開發時間縮短一半,工藝視窗提高三分之一。我們在過去三年中一直在開發AIx
,為工程師提供一種全新的工具包,以解決我們行業日益複雜的挑戰。"

"AIx利用大資料和人工智慧的力量,在半導體技術生命週期的每一個階段,從研發到坡道
和HVM,為客戶提供更好的結果,"應用材料公司半導體產品集團副總裁Raman
Achutharaman說。"工程師們有成千上萬的工藝變數可供選擇,而只有少數難以捉摸的相
關性提供了優化配方以獲得世界級結果的關鍵。AIx識別並放大了這些可操作的資料,為
工程師提供了加速PPACt所需的可操作的見解。"

"應用材料公司再一次以其面向工藝工程生態系統的AIx平臺的形式,通過大資料分析為半
導體行業增加了真正的價值,"VLSIresearch首席執行官兼董事長Dan Hutcheson說。"AIx
超越了幾十年來基於線性資料流程的統計程序控制方法,進入了一個新的多維世界,在這
個世界裡,來自3D圖像、現場計量和感測器的資料可以被堆疊起來,然後提煉成可以採取
行動的資訊。Applied的AIx是一個新的工具箱,它有望加速研發,從而縮短從結果到時間
,最終縮短從時間到金錢的過程。我預計AIx演算法將被移植到生產中,以即時控制室控
制過程。"

AIx平臺包括

- ChamberAITM:應用材料工藝室的新型感測器和機器學習演算法,為工程師提供化學、
能量、壓力、溫度和持續時間等變數的即時分析。

- 機載計量。獨特的真空計量,使新的薄膜在沉積過程中得到測量,具有角度級精度。

- 線上計量。基於Applied eBeam計量學的獨特演算法,與傳統方法相比,測量速度提高
了100倍,解析度也提高了50%。工程師每小時可獲得超過一百萬次的3D晶圓測量,以對配
方的微小變化如何影響晶片上的設備和結構進行納米級評估。

- AppliedPROTM:工藝配方優化器可生成數位工藝圖,説明加速材料和配方開發,減少變
化,擴大工藝視窗。AppliedPRO可用於優化單個腔室和工具,以及加速整個系統的匹配。

- 數位孿生模型。AIx平臺包括精選應用材料室和系統的數位孿生模型,可進行虛擬實驗
,加速配方開發,改善匹配和坡道傳輸,並優化大批量生產中的產量和收益。

- 計算。AIx平臺包括使用機器學習和AI演算法存儲和分析海量資料所需的計算資源。

應用材料公司將在4月6日舉行的2021年投資者會議上以及計畫於2021年5月5日和6月16日
舉行的大師班活動中分享AIx案例。



心得/評論:

AMAT現在關於AI在製程上的應用也開花結果了
預計會在明天做公開演示

走在世界最前端的公司不管是材料還是製作都越來越依靠演算法
不投入這一塊的建構,就會在開發速度上面被越拋越遠
當然最後還是要回歸到效益上面
就像你不會用演算法去演算最佳掃地路徑,雖然確是會有所改善,但是沒有效益

不過,演算掃地路徑倒是一個行銷掃地機器人的不錯噱頭就是了

這種應用依據過去經驗,比較不會有立竿見影的成效
必須要時間拉長來看成效
具體來說必須看AMAT明天演示出來的結果到底是有多強
畢竟也花了三年去做,很爛也不用拿出來現了

--
Tags: 股票

All Comments

Edward Lewis avatar
By Edward Lewis
at 2021-04-08T05:55
當然是很強才會拿出來秀 你會拿train爛的出來秀?
George avatar
By George
at 2021-04-10T17:58
也是,明天就看AMAT的火力展示
Joseph avatar
By Joseph
at 2021-04-12T23:15
AI知道機台噴particle惹嗎 吹吹吹= =
Steve avatar
By Steve
at 2021-04-16T16:26
上200
Enid avatar
By Enid
at 2021-04-20T05:31
小的惶恐,沒年啥書,一樓是要講trend?
Aaliyah avatar
By Aaliyah
at 2021-04-21T20:42
AI分析這Particles 要用酒精擦
Susan avatar
By Susan
at 2021-04-26T18:04
trend是三小
Jessica avatar
By Jessica
at 2021-04-30T01:26
一樓講AI training
Candice avatar
By Candice
at 2021-04-30T08:29
噗 笑死
Aaliyah avatar
By Aaliyah
at 2021-05-02T17:25
以為別人拼錯字結果是自己根本不知道別人講啥

美股 QS 多

Yedda avatar
By Yedda
at 2021-04-05T22:41
------------------------------------------------------------------------- 1.發文前請先詳閱[標的]分類發文規範,未依規範發文將受處份。 2.發標的文未充實內文,多空理由不充實者,板規1-1-5或4-4處份 3.進退場機制若非長期投資, ...

美股期貨走升 特斯拉盤前上漲逾7%

Victoria avatar
By Victoria
at 2021-04-05T22:01
原文標題: 美股期貨走升 特斯拉盤前上漲逾7% 原文連結: https://news.cnyes.com/news/id/4623718?exp=a 發布時間: 2021/04/05 21:14 原文內容: 美股期貨走升 特斯拉盤前上漲逾7% 美國非農就業數據強勁,美股期貨週一 (5 日) 走 ...

擔心中概股被摘牌? 傳中共欲設立新證交

Charlie avatar
By Charlie
at 2021-04-05T21:58
原文標題:擔心中概股被摘牌? 傳中共欲設立新證交所 (請勿刪減原文標題) 原文連結:https://bit.ly/2Op9iZK (請善用縮網址工具) 發 ...

葉倫將呼籲採行全球企業最低稅負制 避免

Anthony avatar
By Anthony
at 2021-04-05T21:36
原文標題:葉倫將呼籲採行全球企業最低稅負制 避免惡性競爭 (請勿刪減原文標題) 原文連結: https://bit.ly/3sS9q2U (請善用縮網 ...

操作波段是不是期貨遠好於融資?

William avatar
By William
at 2021-04-05T21:25
想請問各位前輩們 如果一檔股票有融資也有期貨 那是不是用期貨一定比融資好呢? 融資槓桿是2.5倍 但交易手續費和融資利息很高 如果我期貨保證金也放到只有2.5倍槓桿 但交易成本卻遠小於融資 期貨雖然每月結算 但我也可以每月轉倉 成本一樣比融資低很多 搞不好還有逆價差可賺 我小資族先不考慮量的流動性問題 ...